(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: LogBuiltIn
public class LogBuiltIn{
public static int log(int x) {

int res = 0;

while (x > 1) {

x = x/2;
res++;

}

return res;

}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}



public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
LogBuiltIn.main([Ljava/lang/String;)V: Graph of 100 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 11 rules for P and 5 rules for R.


Combined rules. Obtained 1 rules for P and 0 rules for R.


Filtered ground terms:


348_0_log_ConstantStackPush(x1, x2, x3) → 348_0_log_ConstantStackPush(x2, x3)

Filtered duplicate args:


348_0_log_ConstantStackPush(x1, x2) → 348_0_log_ConstantStackPush(x2)

Combined rules. Obtained 1 rules for P and 0 rules for R.


Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(x0[0] > 1, 348_0_log_ConstantStackPush(x0[0]))
(1): COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1])) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[1] / 2))

(0) -> (1), if ((x0[0] > 1* TRUE)∧(348_0_log_ConstantStackPush(x0[0]) →* 348_0_log_ConstantStackPush(x0[1])))


(1) -> (0), if ((348_0_log_ConstantStackPush(x0[1] / 2) →* 348_0_log_ConstantStackPush(x0[0])))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0)) → COND_348_1_MAIN_INVOKEMETHOD(>(x0, 1), 348_0_log_ConstantStackPush(x0)) the following chains were created:
  • We consider the chain 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0])), COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1])) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2))) which results in the following constraint:

    (1)    (>(x0[0], 1)=TRUE348_0_log_ConstantStackPush(x0[0])=348_0_log_ConstantStackPush(x0[1]) ⇒ 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥NonInfC∧348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))∧(UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint:

    (2)    (>(x0[0], 1)=TRUE348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥NonInfC∧348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))∧(UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11 + (2)bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)







For Pair COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0)) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0, 2))) the following chains were created:
  • We consider the chain 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0])), COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1])) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2))), 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0])) which results in the following constraint:

    (7)    (>(x0[0], 1)=TRUE348_0_log_ConstantStackPush(x0[0])=348_0_log_ConstantStackPush(x0[1])∧348_0_log_ConstantStackPush(/(x0[1], 2))=348_0_log_ConstantStackPush(x0[0]1) ⇒ COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1]))≥NonInfC∧COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1]))≥348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))∧(UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥))



    We simplified constraint (7) using rules (I), (II), (III), (IV) which results in the following new constraint:

    (8)    (>(x0[0], 1)=TRUECOND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[0]))≥NonInfC∧COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[0]))≥348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[0], 2)))∧(UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (x0[0] + [-2] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] ≥ 0∧[4] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13 + (2)bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13 + (2)bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0)) → COND_348_1_MAIN_INVOKEMETHOD(>(x0, 1), 348_0_log_ConstantStackPush(x0))
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11 + (2)bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)

  • COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0)) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0, 2)))
    • (x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13 + (2)bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(348_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1   
POL(348_0_log_ConstantStackPush(x1)) = [-1] + [-1]x1   
POL(COND_348_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(2) = [2]   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(/(x1, 2)1 @ {348_1_MAIN_INVOKEMETHOD_1/0, 348_0_log_ConstantStackPush_1/0}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1])) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))

The following pairs are in Pbound:

348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))
COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1])) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))

The following pairs are in P:

348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))

At least the following rules have been oriented under context sensitive arithmetic replacement:

/1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(x0[0] > 1, 348_0_log_ConstantStackPush(x0[0]))


The set Q is empty.

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE