0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
public class LogBuiltIn{
public static int log(int x) {
int res = 0;
while (x > 1) {
x = x/2;
res++;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 11 rules for P and 5 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
348_0_log_ConstantStackPush(x1, x2, x3) → 348_0_log_ConstantStackPush(x2, x3)
Filtered duplicate args:
348_0_log_ConstantStackPush(x1, x2) → 348_0_log_ConstantStackPush(x2)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x0[0] > 1 →* TRUE)∧(348_0_log_ConstantStackPush(x0[0]) →* 348_0_log_ConstantStackPush(x0[1])))
(1) -> (0), if ((348_0_log_ConstantStackPush(x0[1] / 2) →* 348_0_log_ConstantStackPush(x0[0])))
(1) (>(x0[0], 1)=TRUE∧348_0_log_ConstantStackPush(x0[0])=348_0_log_ConstantStackPush(x0[1]) ⇒ 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥NonInfC∧348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))∧(UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥))
(2) (>(x0[0], 1)=TRUE ⇒ 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥NonInfC∧348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0]))≥COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))∧(UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥))
(3) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))), ≥)∧[(-1)Bound*bni_11 + (2)bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(7) (>(x0[0], 1)=TRUE∧348_0_log_ConstantStackPush(x0[0])=348_0_log_ConstantStackPush(x0[1])∧348_0_log_ConstantStackPush(/(x0[1], 2))=348_0_log_ConstantStackPush(x0[0]1) ⇒ COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1]))≥NonInfC∧COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1]))≥348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))∧(UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥))
(8) (>(x0[0], 1)=TRUE ⇒ COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[0]))≥NonInfC∧COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[0]))≥348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[0], 2)))∧(UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥))
(9) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(10) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(11) (x0[0] + [-2] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(12) (x0[0] ≥ 0∧[4] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13 + (2)bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(13) (x0[0] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_13 + (2)bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(348_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(348_0_log_ConstantStackPush(x1)) = [-1] + [-1]x1
POL(COND_348_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {348_1_MAIN_INVOKEMETHOD_1/0, 348_0_log_ConstantStackPush_1/0}) = max{x1, [-1]x1} + [-1]
COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1])) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))
348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))
COND_348_1_MAIN_INVOKEMETHOD(TRUE, 348_0_log_ConstantStackPush(x0[1])) → 348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(/(x0[1], 2)))
348_1_MAIN_INVOKEMETHOD(348_0_log_ConstantStackPush(x0[0])) → COND_348_1_MAIN_INVOKEMETHOD(>(x0[0], 1), 348_0_log_ConstantStackPush(x0[0]))
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer